FisiopatologÃa de la sepsis y el shock séptico
Texto completo:
PDFResumen
Introducción: La sepsis y el shock séptico resultan de una respuesta inadecuada a la infección, con la participación de Patrones Moleculares Derivados de Patógenos (PAMPs) y Patrones Moleculares Asociados al Daño (DAMPs) que interactúan con las células presentadoras de antÃgenos. Esto desencadena una cascada inflamatoria que afecta la inmunidad innata y adaptativa, generando disfunción endotelial, activación de la cascada de coagulación, sistema complemento y daño tisular, culminando en disfunción orgánica
Objetivo: Actualizar los mecanismos fisiopatológicos de la sepsis y el shock séptico en pacientes.
Métodos: Realizamos una búsqueda en Pub Med, INH y Lilacs de la literatura médica en inglés y español de los últimos 5 años. Se analizaron los factores que influyen en la fisiopatologÃa, manifestaciones clÃnicas y desarrollo de la sepsis, asà como las caracterÃsticas en los órganos afectados.
Resultados: La sepsis y el shock séptico derivan de una respuesta inapropiada a la infección, manifestándose como disfunción orgánica múltiple. Progresan en etapas clÃnicas sucesivas debido a la respuesta inflamatoria sistémica inducida por múltiples mediadores inflamatorios.
Conclusiones: La transición de la sepsis al shock séptico y la disfunción orgánica múltiple involucra mecanismos epigenéticos y metabólicos que reprograman células inmunes, siendo influenciada por la virulencia del patógeno y la respuesta individual del paciente.
Palabras clave
Referencias
Vincent JL, Jones G, David S, Olariu E, Cadwell KK. Frequency and mortality of septic shock in Europe and North America: a systematic review and meta-analysis. Crit Care. 2019;23:196. Disponible doi: 10.1186/s13054-019-2478-6.
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit Care Med. 2021;149(11):e1063-e1143. Disponible doi: 10.1097/CCM.0000000000005337.
Tsantes AG, Parastatidou S, Tsantes EA, Bonova E, Tsante KA, Mantzios PG, et al. Sepsis-Induced Coagulopathy: An Update on Pathophysiology, Biomarkers, and Current Guidelines. Life. 2023;13:350. Disponible https://doi.org/10.3390/life13020350.
Rubio I, Osuchowski MF, Shankar-Hari M, Skirecki T, Winkler MS, Lachmann G, et al. Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infect Dis. 2019;19:e422–e36. Disponible doi: 10.1016/S1473-3099(19)30567-5.
Kuwabara S, Goggins E, Okusa MD. The Pathophysiology of Sepsis-Associated AKI. CJASN. 2022;17(7):1050-1069. Disponible doi: 10.2215/CJN.00850122.
Wiersinga WJ, van der Poll T. Immunopathophysiology of human sepsis. BioMedicine. 2022;86:104363. Disponible https://doi.org/10.1016/j.ebiom.2022.104363.
Zhang W, Jiang H, Wu G, Huang P, Wang H, An H, Liu S, Zhang W. The pathogenesis and potential therapeutic targets in sepsis. Mol Clin Oncol. 2023;10.1002/mco2.418. Disponible https://doi.org/10.1002/mco2.418.
Cao M, Wang G, Xie J. Immune dysregulation in sepsis: experiences, lessons and perspectives. Cell Death Discov. 2023;9:465. Disponible https://doi.org/10.1038/s41420-023-01766-7.
Koc S, Celebi S, Hanikoglu F, Polat Y, Borku Uysal B, Dokur M, Ozer T, Yavuzer S, Islamoglu MS, Cengiz M, Vardar G, Kupeli Ä°. Can the Reduction of Cytokines Stop the Progression of Sepsis? Cureus. 2022;14(2):e22325. Disponible doi: 10.7759/cureus.22325.
Parthasarathy U, Kuang Y, Thakur G, Hogan JD, Wyche TP, Norton JE Jr, Killough JR, Sana TR, Beakes C, Shyong B, Zhang RN, Gutierrez DA, Filbin M, Christiani DC, Therien AG, Woelk CH, White CH, Martinelli R. Distinct subsets of neutrophils crosstalk with cytokines and metabolites in patients with sepsis. iScience. 2023 Jan 7;26(2):105948. Disponible doi: 10.1016/j.isci.2023.105948. PMID: 36756375; PMCID: PMC9900520.
Tang H, Qin S, Li Z, Gao W, Tang M, Dong X. Early immune system alterations in patients with septic shock. Front Immunol. 2023;14:1126874. Disponible doi: 10.3389/fimmu.2023.1126874. PMID: 36845110; PMCID: PMC9947342
Daix T, Guerin E, Tavernier E, Mercier E, Gissot V, Herault O, et al. Multicentric standardized flow cytometry routine assessment of patients with sepsis to predict clinical worsening. Chest. 2018;154:617–27. Disponible doi: 10.1016/j.chest.2018.03.058.
Cox LE, Walstein K, Vollger L, Reuner F, Bick A, Dotsch A, et al. Neutrophil extracellular trap formation and nuclease activity in septic patients. BMC Anesthes. 2020;20:15. Disponible doi: 10.1186/s12871-019-0911-7.
Ortmann W, Kolaczkowska E. Age is the work of art? Impact of neutrophil and organism age on neutrophil extracellular trap formation. Cell Tissue Res. 2018;371:473–:88. Disponible doi: 10.1007/s00441-017-2751-4.
Kwok AJ, Allcock A, Ferreira RC, et al. Neutrophils and emergency granulopoiesis drive immune suppression and an extreme response endotype during sepsis. Nat Immunol. 2023;24:767–779. Disponible doi: 10.1038/s41590-023-01490-5.
Saito S, Uchino S, Hayakawa M, Yamakawa K, Kudo D, Iizuka Y, et al. Epidemiology of disseminated intravascular coagulation in sepsis and validation of scoring systems. J Crit Care. 2019;50:23–30. Disponible doi: 10.1016/j.jcrc.2018.11.009.
Iba T, Levy JH, Thachil J, Susen S, Levi M, Scarlatescu E. Comunicación de los Comités CientÃficos de Normalización de la Sociedad Internacional de Trombosis y Hemostasia sobre los biomarcadores relacionados con el endotelio vascular en la coagulación intravascular diseminada. J Trombo hemostático. 2023; 21(3):691-699. Disponible: doi: 10.1016/j.jtha.2022.11.032. E.
Iba T, Arakawa M, Di Nisio M, Gando S, Anan H, Sato K, et al. Newly proposed sepsis-induced coagulopathy precedes international society on thrombosis and haemostasis overt-disseminated intravascular coagulation and predicts high mortality. J Intensive Care Med. 2020;35:643–9. Disponible doi: 10.1177/0885066618773679.
Iba T, Levi M, Levy JH. Sepsis-induced coagulopathy and disseminated intravascular coagulation. Sem Thromb Hemost. 2020;46:89–95. Disponible doi: 10.1055/s-0039-1694995.
Van Hinsbergh V. Endothelium - Role in regulation of coagulation and inflammation. Semin Immunopathol. 2011 Aug;34(1):93-106. Disponible doi: 10.1007/s00281-011-0285-5..
Kruger-Genge A, Blocki A, Franke RP, Jung F. Vascular endothelial cell biology: an update. Int J Mol Sci. 2019;20:4411. Disponible doi: 10.3390/ijms20184411.
de Nooijer AH, Kotsaki A, Kranidioti E, Kox M, Pickkers P, Toonen EJM, Giamarellos-Bourboulis EJ, Netea MG. Complement activation in severely ill patients with sepsis: no relationship with inflammation and disease severity. Crit Care. 2023 16;27(1):63. Disponible doi: 10.1186/s13054-023-04344-6.
van der Poll T, Shankar-Hari M, Wiersinga WJ. La inmunologÃa de la sepsis. Inmunidad. 2021; 54(11):2450-2464. Disponible: doi: 10.1016/j.immuni.2021.10.012. PMID: 34758337.
Citation: Berton RR, McGonagil PW, Jensen IJ,Ybarra TK, Bishop GA, Harty JT, et al. Sepsis leads to lasting changes in phenotype and function of naïve CD8 T cells. PLoS Pathog 2023;19(10):e1011720. https://doi.org/10.1371/journal.ppat.101172
Sommerfeld O, Medyukhina A, Neugebauer S, Ghait M, Ulferts S, Lupp A, et al. Targeting complement C5a receptor 1 for the treatment of immunosuppression in sepsis. Mol Ther. 2020;29:338–346. Disponible doi: 10.1016/j.ymthe.2020.09.008.
Seiler DL, Kähler KH, Kleingarn M, Sadik CD, Bieber K, Köhl J,et al. The complement receptor C5aR2 regulates neutrophil activation and function contributing to neutrophil-driven epidermolysis bullosa acquisita. Front Immunol. 2023;14:1197709. Disponible doi: 10.3389/fimmu.2023.1197709.
Vlaar APJ, de Bruin S, Busch M, Timmermans S, van Zeggeren IE, Koning R, et al. Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): an exploratory, open-label, phase 2 randomised controlled trial. Lancet Rheumat. 2020;2:e764–e773. Disponible doi: 10.1016/S2665-9913(20)30341-6.
Zhang W, Fang X, Gao C, Song C, He Y, Zhou T,et al. MDSCs in sepsis-induced immunosuppression and its potential therapeutic targets. Cytokine Growth Factor Rev. 2023;69:90-103. Disponible doi: 10.1016/j.cytogfr.2022.07.007.
Lindell RB, Meyer NJ. Interrogating the sepsis host immune response using cytomics. Crit Care. 2023;27:93. Disponible doi: 10.1186/s13054-023-04366-0.
Yao RQ, Zhao PY, Li ZX, Liu YY, Zheng LY, Duan Y, et al .El perfil del transcriptoma unicelular de la sepsis identifica monocitos HLA-DRS100A con función inmunosupresora. Mil Med Res. 2023; 10(1):27. Disponible: doi: 10.1186/s40779-023-00462-y.
Magierowicz M, Lechevalier N, Freynet N, Pastoret C, Badaoui B, Ly-Sunnaram B, et al. Reference Values for WBC Differential by Hematoflow Analysis. Am J Clin Pathol. 2019;151(3):324–327. Disponible doi: 10.1093/ajcp/aqy147.
Tang H, Qin S, Li Z, Gao W, Tang M, Dong X. Early immune system alterations in patients with septic shock. Front Immunol. 2023;14:1126874. Disponible doi: 10.3389/fimmu.2023.1126874.
Adigbli D, Liu R, Meyer J, Cohen J, Di Tanna GL, Gianacas C; et al.Valor pronóstico de la linfopenia persistente en la enfermedad crÃtica: estudio PIVOTAL. Linfopenia persistente precoz y riesgo de muerte en pacientes crÃticos con y sin sepsis. Shock. 2023 de diciembre de 28. doi: 10.1097/SHK.0000000000002284. Epub antes de imprimir. PMID: 38151771..
Fu X, Liu Z, Wang Y. Advances in the Study of Immunosuppressive Mechanisms in Sepsis. J Inflamm Res. 2023;16:3967-3981. Disponible doi: 10.2147/JIR.S426007.
Ma C, Liu H, Yang S, Li H, Liao X, Kang Y. The emerging roles and therapeutic potential of B cells in sepsis. Front Pharmacol. 2022;13:1034667. Disponible doi: 10.3389/fphar.2022.1034667.
Gawish R, Maier B, Obermayer G, Watzenboeck ML, Gorki AD, Quattrone F,. Un eje neutrófilo-célula B afecta el control del daño tisular en un modelo murino de infección bacteriana intraabdominal a través de Cxcr4. 2022 de septiembre de 30; 11:E78291. Disponible doi: 10.7554/eLife.78291. PMID: 36178806; PMCID: PMC9525059.
Arumugham VB, Rayi A. Inmunoglobulina intravenosa (IVIG). 2023 de julio de 3. En: StatPearls [Internet]. La Isla del Tesoro (FL): StatPearls Publishing; Enero de 2023–. PMID: 32119333.Disponible: https://www.ncbi.nlm.nih.gov/books/NBK554446/.
Bayry J, Ahmed EA, Toscano-Rivero D, Vonniessen N, Genest G, Cohen CG, Dembele M, Kaveri SV, Mazer BD. Intravenous Immunoglobulin: Mechanism of Action in Autoimmune and Inflammatory Conditions. J Allergy Clin Immunol Pract. 2023;11(6):1688-1697. Disponible doi: 10.1016/j.jaip.2023.04.002.
Bénard A, Jacobsen A, Brunner M, et al. Interleukin-3 is a predictive marker for severity and outcome during SARS-CoV-2 infections. Nat Commun. 2021;12:1112. Disponible doi: 10.1038/s41467-021-21310-4.
Krautz C, Maier SL, Brunner M, Langheinrich M, Giamarellos-Bourboulis EJ, Gogos C, et al. Reduced circulating B cells and plasma IgM levels are associated with decreased survival in sepsis - A meta-analysis. J Crit Care. 2018;45:71–5. Disponible doi: 10.1016/j.jcrc.2018.01.013.
Dong X, Liu Q, Zheng Q, Liu X, Wang Y, Xie Z, et al. Alterations of B cells in immunosuppressive phase of septic shock patients. Crit Care Med. 2020;48:815–21. Disponible: https://doi.org/10.1097/CCM.0000000000004309
Singer M, Torres A, Heinz CC, et al. The immunomodulating activity of trimodulin (polyvalent IgM, IgA, IgG solution): a post hoc analysis of the phase II CIGMA trial. Crit Care. 2023;27:436. Disponible: https://doi.org/10.1186/s13054-023-04719-9
Jarczak D, Kluge S, Nierhaus A. Sepsis—Pathophysiology and Therapeutic Concepts. Front Med. 2021;8:628302. Disponible: https://doi.org/10.3389/fmed.2021.628302
Del Fresno C, Schulte LN, López-Collazo E. Editorial: Role of hypoxia-inducible factors in metabolic immune cell adaptation during sepsis. Front Immunol.2023;(18 )14:1194504. . Disponible: https://doi.org/10.3389/fimmu.2023.1194504. PMID: 37143647.
Unar A, Bertolino L, Patauner F, Gallo R, Durante-Mangoni E. Decoding Sepsis-Induced Disseminated Intravascular Coagulation: A Comprehensive Review of Existing and Emerging Therapies. J Clin Med. 2023 Sep 22;12(19):6128. . Disponible: https://doi.org/10.3390/jcm12196128..
Liu S, Luo W, Szatmary P, Zhang X, Lin JW, Chen L, Liu D, Sutton R, Xia Q, Jin T, Liu T, Huang W. Monocytic HLA-DR Expression in Immune Responses of Acute Pancreatitis and COVID-19. Int J Mol Sci. 2023;24(4):3246. . Disponible: https://doi.org/10.3390/ijms24043246.
Shankar-Hari M, Datta D, Wilson J, Assi V, Stephen J, Weir CJ, et al. Early PREdiction of sepsis using leukocyte surface biomarkers: the ExPRES-sepsis cohort study. Inten Care Med. 2018;44:1836–48. Disponible: https://doi.org/10.1007/s00134-018-5389-0
Lee MJ, Bae J, Lee JH, Park YJ, Lee HAR, Mun S, et al.Serial Change of Endotoxin Tolerance in a Polymicrobial Sepsis Model. International Journal of Molecular Sciences. 2022;23(12):6581. Disponible: https://doi.org/10.3390/ijms23126581
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol. 2018;19:108–19. . Disponible: : https://doi.org/10.1038/s41590-017-0022-x
Hawkins RB, Raymond SL, Stortz JA, Horiguchi H, Brakenridge SC, Gardner A, et al. Chronic critical illness and the persistent inflammation, immunosuppression, and catabolism syndrome. Front Immunol. 2018;9:1511. . Disponible: https://doi.org/10.3389/fimmu.2018.01511
Lee MJ, Bae J, Lee JH, Park YJ, Lee HAR, Mun S, et al.Serial Change of Endotoxin Tolerance in a Polymicrobial Sepsis Model. Int J Mol Sci. 2022;23(12):6581. . Disponible: https://doi.org/10.3390/ijms23126581
Zhang W, Jiang H, Wu G, Huang P, Wang H, An H, et al. The pathogenesis and potential therapeutic targets in sepsis. MedComm. 2023 Nov 20;4(6):e418. . Disponible: https://doi.org/10.1002/mco2.418.
Dan Wu1, Yuxin Shi, Hao Zhang , Changhong Miao,Wu D, Shi Y, et al. Epigenetic mechanisms of immune remodeling in sepsis: targeting histone modification. Cell Death Dis. 2023;14:112. . Disponible: https://doi.org/10.1038/s41419-023-05656-9
Qu L, Yin T, Zhao Y, Lv W, Liu Z, Chen C et alMuerte celular Discov. 2023 de junio de 23; 9(1):188. doi: 10.1038/s41420-023-01489-9. Histone demethylases in the regulation of immunity and inflammation. Cell Death Discov. 2023;9:188. . Disponible: https://doi.org/10.1038/s41420-023-01489-9
Xu C, Li J, Liang Z, Zhong Y, Zhang Z, Hu X,et al. Sirtuins in macrophage immune metabolism: A novel target for cardiovascular disorders. Int J Biol Macromol. 2024;256(Part 1):128270. Disponible: https://doi.org/10.1016/j.ijbiomac.2023.128270.
Diener C, Keller A, Meese E. The miRNA–target interactions: An underestimated intricacy. Nucleic Acids Res. 2023;gkad1142. . Disponible: https://doi.org/10.1093/nar/gkad1142.
Teng C, Zhang C, Guo F, Song L, Fang Y. Advances in the Study of the Transcriptional Regulation Mechanism of Plant miRNAs. Life. 2023;13(9):1917. . Disponible: https://doi.org/10.3390/life13091917
Zheng X, Zhang Y, Lin S, Li Y, Hua Y, Zhou K. Diagnostic significance of microRNAs in sepsis. PLoS ONE. 2023;18(2):e0279726. . Disponible: https://doi.org/10.1371/journal.pone.0279726
Bryniarski K, Fernández-Messina L, Askenase PW, Nazimek K. Editorial: Extracellular vesicles as potent modulators of immunity. Front Cell Dev Biol. 2023;11:1278498. . Disponible: https://doi.org/10.3389/fcell.2023.1278498.
Bryzgunova O, Konoshenko M, Zaporozhchenko I, Yakovlev A, Laktionov P. Isolation of Cell-Free miRNA from Biological Fluids: Influencing Factors and Methods. Diagnostics. 2021;11(5):865. . Disponible: https://doi.org/10.3390/diagnostics11050865
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol. 2023;14:1244345. . Disponible: : https://doi.org/10.3389/fimmu.2023.1244345
Suganuma S, Idei M, Nakano H, Koyama Y, Hashimoto H, Yokoyama N, et al. Impact of Persistent Inflammation, Immunosuppression, and Catabolism Syndrome during Intensive Care Admission on Each Post-Intensive Care Syndrome Component in a PICS Clinic. J Clin Med. 2023;12(16):5427. . Disponible: https://doi.org/10.3390/jcm12165427
Li R, Ye JJ, Gan L, Zhang M, Sun D, Li Y, et al.Respuesta inflamatoria traumática: papel fisiopatológico y valor clÃnico de las citocinas. Eur J Trauma Emerg Surg. 2023 Dic 27. Disponible:doi: 10.1007/s00068-023-02388-5. Epub antes de imprimir. PMID: 38151578.
Horiguchi H, Loftus TJ, Hawkins RB, Raymond SL, Stortz JA, Hollen MK, et al. Innate immunity in the persistent inflammation, immunosuppression, and catabolism syndrome and its implications for therapy. Front Immunol. 2018;9:595. Disponible: https://doi.org/10.3389/fimmu.2018.00595
Grupo de Trabajo para la Definición de SDRA; Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. SÃndrome de dificultad respiratoria aguda: la definición de BerlÃn. JAMA. 2012; 307(23):2526-33. Disponible:doi: 10.1001/jama.2012.5669.
Xu H, Sheng S, Luo W, Xu X, Zhang Z. Acute respiratory distress syndrome heterogeneity and the septic ARDS subgroup. Front Immunol. 2023;14:1277161.: . Disponible: https://doi.org/10.3389/fimmu.2023.1277161
Grotberg JC, Reynolds D, Kraft BD. Management of severe acute respiratory distress syndrome: a primer. Crit Care. 2023;27:289. . Disponible: https://doi.org/10.1186/s13054-023-04572-w
Fawley JA, Tignanelli CJ, Werner NL, Kasotakis G, Mandell SP, Glass NE, Dries DJ, Costantini TW, Napolitano LM. American Association for the Surgery of Trauma/American College of Surgeons Committee on Trauma clinical protocol for management of acute respiratory distress syndrome and severe hypoxemia. J Trauma Acute Care Surg. 2023;95(4):592-602. . Disponible: doi: 10.1097/TA.0000000000004046.
Huppert LA, Matthay MA, Ware LB. Pathogenesis of acute respiratory distress syndrome. Semin Respir Crit Care Med. 2019;40:31–9. . Disponible: : https://doi.org/10.1055/s-0039-1683996
Diamond M, Peniston HL, Sanghavi DK, et al. Acute Respiratory Distress Syndrome. [Updated 2023 Apr 6]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-.. Disponible: : https://www.ncbi.nlm.nih.gov/books/NBK436002/
Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5:18. . Disponible: https://doi.org/10.1038/s41572-019-0069-0
Mayerhöfer T, Perschinka F, Klein SJ, Peer A, Lehner GF, Bellmann R, et al. Incidence, risk factors and outcome of acute kidney injury in critically ill COVID-19 patients in Tyrol, Austria: a prospective multicenter registry study. J Nephrol. 2023;36(9):2531-2540. . Disponible: doi: 10.1007/s40620-023-01760-3.
Zarbock A, Koyner JL, Gomez H, Pickkers P, Forni L, Acute Disease Quality Initiative group. Sepsis-associated acute kidney injury—treatment standard. Nephrol Dial Transplant. 2024;39(1):26-35. . Disponible: https://doi.org/10.1093/ndt/gfad142
Buchanan C, Mahmoud H, Cox E, Noble R, Prestwich B, Kasmi I, et al. Multiparametric MRI assessment of renal structure and function in acute kidney injury and renal recovery. Clin Kidney J. 2021;14(8):1969–1976. . Disponible: https://doi.org/10.1093/ckj/sfaa221
Bruno RR, Wollborn J, Fengler K, et al. Direct assessment of microcirculation in shock: a randomized-controlled multicenter study. Intensive Care Med. 2023;49:645–655. . Disponible: https://doi.org/10.1007/s00134-023-07098-5
Kwiatkowska E, Kwiatkowski S, Dziedziejko V, Tomasiewicz I, Domański L. Renal Microcirculation Injury as the Main Cause of Ischemic Acute Kidney Injury Development. Biology. 2023;12(2):327. . Disponible: https://doi.org/10.3390/biology12020327
Poston JT, Koyner JL. Sepsis-associated acute kidney injury. BMJ. 2019;364:k4891. . Disponible: https://doi.org/10.1136/bmj.k4891
Peerapornratana S, Manrique-Caballero CL, Gomez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019;96:1083–99. . Disponible: https://doi.org/10.1016/j.kint.2019.05.026
Wang D, Sun T, Liu Z. Sepsis-Associated Acute Kidney Injury. Intensive Care Res. 2023;3:251–258. . Disponible: https://doi.org/10.1007/s44231-023-00049-0
Romejko K, Markowska M, Niemczyk S. The Review of Current Knowledge on Neutrophil Gelatinase-Associated Lipocalin (NGAL). Int J Mol Sci. 2023;24(13):10470. . Disponible: : https://doi.org/10.3390/ijms241310470
Assadi F, Sharbaf FG. Urine KIM-1 as a potential biomarker of acute renal injury after circulatory collapse in children. Pediatr Emerg Care. 2019;35:104–7. . Disponible: https://doi.org/10.1097/PEC.0000000000000886
Pan HC, Yang SY, Chiou TTY, et al. Comparative accuracy of biomarkers for the prediction of hospital-acquired acute kidney injury: a systematic review and meta-analysis. Crit Care. 2022;26:349. . Disponible: https://doi.org/10.1186/s13054-022-04223-6
Weiss R, von Groote T, Ostermann M, et al. The Role of Cell Cycle Arrest Biomarkers for Predicting Acute Kidney Injury in Critically Ill COVID-19 Patients: A Multicenter, Observational Study. Crit Care Med. 2023;51(8):992–1000. Disponible: :https://doi.org/10.1097/CCM.0000000000005853
Cho WY, Lim SY, Yang JH, Oh SW, Kim MG, Jo SK. Inhibidor tisular urinario de la metaloproteinasa-2 y la proteÃna de unión al factor de crecimiento similar a la insulina 7 como biomarcadores de pacientes con lesión renal aguda establecida. Korean J Intern Med. 2020 M; 35(3):662-671. Disponible: doi: 10.3904/kjim.2018.266.
Huang F, Zeng Y, Lv L, Chen Y, Yan Y, Luo L, et al. Predictive value of urinary cell cycle arrest biomarkers for all-cause acute kidney injury: a meta-analysis. Sci Rep. 2023;13:6037. . Disponible: https://doi.org/10.1038/s41598-023-33233-9
Nierhaus A, Bloos F, Wilson DC, Elke G, Meybohm P; Grupo de Ensayos de Cuidados CrÃticos S et al. Predicting the requirement for renal replacement therapy in intensive care patients with sepsis. Crit Care. 2018;22:201. . Disponible: https://doi.org/10.1186/s13054-018-2135-5
Papp M, Kiss N, Baka M, Trásy D, Zubek L, Fehérvári P, et al. Procalcitonin-guided antibiotic therapy may shorten length of treatment and may improve survival—a systematic review and meta-analysis. Crit Care. 2023;27:394. . Disponible: https://doi.org/10.1186/s13054-023-04677-2.
Roedl K, Jarczak D, Fischer M, Haddad M, Boenisch O, de Heer G, et al. MR-proAdrenomedullin as predictor of renal replacement therapy in a cohort of critically ill patients with COVID-19. Biomarkers. 2021;2021:1–20. . Disponible: https://doi.org/10.1080/1354750X.2021.1905067
Geri G, Vignon P, Aubry A, Fedou AL, Charron C, Silva S, et al. Cardiovascular clusters in septic shock combining clinical and echocardiographic parameters: a post hoc analysis. Intensive Care Med. 2019;45:657–67. . Disponible: https://doi.org/10.1007/s00134-019-05596-z
Habimana R, Choi I, Cho HJ, Kim D, Lee K, Jeong I. Sepsis-induced cardiac dysfunction: a review of pathophysiology. Acute Crit Care. 2020;35:57–66.: . Disponible: https://doi.org/10.4266/acc.2020.00248
Song J, Fang X, Zhou K, Bao H, Li L. Sepsis induced cardiac dysfunction and pathogenetic mechanisms (Review). Mol Med Rep. 2023;28(6):227. . Disponible: :https://doi.org/10.3892/mmr.2023.13114
Liu Y, Zhang D, Yin D. Pathophysiological Effects of Various Interleukins on Primary Cell Types in Common Heart Disease. Int J Mol Sci. 2023;24(7):6497. . Disponible: https://doi.org/10.3390/ijms24076497
Iravani Saadi M, Salami J, Abdi H, et al. Expression of Interleukin 1, Interleukin 27 and TNF α genes in patients with Ischemic cardiomyopathy versus idiopathic dilated cardiomyopathy: a case-control study. Health Sci Rep. 2022;5:e701. . Disponible: https://doi.org/10.1002/hsr2.701
Song J, Fang X, Zhou K, Bao H, Li L. Sepsis induced cardiac dysfunction and pathogenetic mechanisms (Review). Mol Med Rep. 2023;28(6):227. . Disponible: : https://doi.org/10.3892/mmr.2023.13114
Zhao Y, Zhou Y, Wang D, Huang Z, Xiao X, Zheng Q, Li S, Long D, Feng L. Mitochondrial Dysfunction in Metabolic Dysfunction Fatty Liver Disease (MAFLD). Int J Mol Sci. 2023;24(24):17514. . Disponible: : https://doi.org/10.3390/ijms242417514
Rodrigues PRS, Picco N, Morgan BP, Ghazal P. Sepsis target validation for repurposing and combining complement and immune checkpoint inhibition therapeutics. Expert Opin Drug Discov. 2021;16(5):537–551. . Disponible: : https://doi.org/10.1080/17460441.2021.1851186
Rahmel T, Marko B, Nowak H, et al. Mitochondrial dysfunction in sepsis is associated with diminished intramitochondrial TFAM despite its increased cellular expression. Sci Rep. 2020;10:21029. . Disponible: : https://doi.org/10.1038/s41598-020-78195-4
Deutschman CS, Hellman J, Roca RF, et al. The surviving sepsis campaign: basic/translational science research priorities. ICMx. 2020;8:31. . Disponible: https://doi.org/10.1186/s40635-020-00312-4
Nedel W, Deutschendorf C, Portela LVC. Sepsis-induced mitochondrial dysfunction: A narrative review. World J Crit Care Med. 2023;12(3):139-152. . Disponible: doi 10.5492/wjccm.v12.i3.139. PMID: 37397587; PMCID: PMC10308342
Zhao R, Jiang S, Zhang L, Yu Z. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 2019;44:3-15. . Disponible: https://doi.org/10.3892/ijmm.2019.4188
Pierre A, Bourel C, Favory R, Brassart B, Wallet F, Daussin FN, et al. Sepsis-like Energy Deficit Is Not Sufficient to Induce Early Muscle Fiber Atrophy and Mitochondrial Dysfunction in a Murine Sepsis Model. Biology. 2023;12:529. Disponible https://doi.org/10.3390/biology12040529
Star B. Mitochondrial dysfunction in sepsis: identifying mechanisms and novel therapies. [Thesis fully internal (DIV), University of Groningen]. University of Groningen. 2023. Disponible: https://doi.org/10.33612/diss.813786185
Skulachev VP, Vyssokikh MY, Chernyak BV, et al. Mitochondrion-targeted antioxidant SkQ1 prevents rapid animal death caused by highly diverse shocks. Sci Rep. 2023;13:4326. Disponible: https://doi.org/10.1038/s41598-023-31281-9
Bernardi P, Gerle C, Halestrap AP, et al. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ. 2023;30:1869–1885. Disponible: https://doi.org/10.1038/s41418-023-01187-0
Khalid N, Patel P D, Alghareeb R, et al. The Effect of Sepsis on Myocardial Function: A Review of Pathophysiology, Diagnostic Criteria, and Treatment. Cureus. 2022;14(6):e26178. : Disponible: https://doi.org/10.7759/cureus.26178
Biasizzo M and Kopitar-Jerala N. Interplay Between NLRP3 Inflammasome and Autophagy. Front Immunol. 2020;11:591803. Disponible: https://doi.org/10.3389/fimmu.2020.591803
Nidadavolu LS, Feger D, Chen D, et al. Associations between circulating cell-free mitochondrial DNA, inflammatory markers, and cognitive and physical outcomes in community dwelling older adults. Immun Ageing. 2023;20:24. Disponible: : https://doi.org/10.1186/s12979-023-00342-y
Shu Q, She H, Chen X, Zhong L, Zhu J, Fang L. Identification and experimental validation of mitochondria-related genes biomarkers associated with immune infiltration for sepsis. Front Immunol. 2023;14:1184126. Disponible: : https://doi.org/10.3389/fimmu.2023.1184126
Berlot G, Zanchi S, Moro E, Tomasini A, Bixio M. The Role of the Intravenous IgA and IgM-Enriched Immunoglobulin Preparation in the Treatment of Sepsis and Septic Shock. J Clin Med. 2023 Jul 12;12(14):4645. Disponible: : https://doi.org/10.3390/jcm12144645.
Keyt BA, Baliga R, Sinclair AM, Carroll SF, Peterson MS. Structure, function, and therapeutic use of IgM antibodies. Antibodies. 2020;9:53. Disponible: : https://doi.org/10.3390/antib9040053
Berlot G, Scamperle A, Istrati T, Dattola R, Longo I, Chillemi A, et al. Kinetics of Immunoglobulins in Septic Shock Patients Treated With an IgM- and IgA-Enriched Intravenous Preparation: An Observational Study. Front Med. 2021;8:605113. Disponible: https://doi.org/10.3389/fmed.2021.605113
Wang F, Cui Y, He D, Gong L, Liang H. Natural killer cells in sepsis: Friends or foes? Front Immunol. 2023;14:1101918. Disponible: https://doi.org/10.3389/fimmu.2023.1101918
Ahuja SK, Manoharan MS, Lee GC, et al. Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection. Nat Commun. 2023;14:3286. Disponible: https://doi.org/10.1038/s41467-023-38238
Singer M, Deutschman CS, Seymour ChW, Shankar-Hari M, Annane D, Bauer M et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801-810. Disponible: doi:10.0001/jama.2016.0287.
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2024 Revista Cubana de Medicina Intensiva y Emergencias